

Inhibitory Action of Glufosinate on Photosynthesis

Aloysius Wild and Christine Wendler

Institut für Allgemeine Botanik der Johannes Gutenberg-Universität,
D-W-6500 Mainz, Bundesrepublik Deutschland

Z. Naturforsch. **48c**, 369–373 (1993); received December 2, 1992

Glufosinate, Phosphinothricin, Photorespiration, Photosynthesis,
Ribulose-1,5-bisphosphate Carboxylase

Glufosinate (phosphinothricin) irreversibly blocks the glutamine synthetase which subsequently gives rise to an accumulation of ammonium and to a strong decrease in some amino acids, especially glutamine and glutamate.

Under atmospheric conditions (400 ppm CO₂, 21% O₂) glufosinate causes a rapid inhibition of photosynthesis, too. However, under non-photorespiratory conditions (1000 ppm CO₂, 2% O₂) only a slight inhibition of photosynthesis occurs with glufosinate. Since under both conditions an accumulation of ammonium occurs, it is concluded that inhibition of photosynthesis is not induced by the higher concentrations of ammonium. The results rather suggest that the absence of amino donors in the glycolate pathway leads to a break-down of the transamination reaction of glyoxylate to glycine. This causes an inhibition of photorespiration and as a further consequence the inhibition of photosynthesis. There are two hypotheses for explaining this phenomenon. One of them supposes that the blockade in the glycolate pathway produces a lack of Calvin cycle intermediates which subsequently is the cause of the inhibition of photosynthesis. The other one suggests a direct inhibition of the ribulose-1,5-bisphosphate carboxylase by the accumulation of glyoxylate and P-glycolate.

After treatment with different intermediates of the Calvin cycle and photorespiration together with glufosinate no decrease in the inhibition of photosynthesis could be measured. This suggests that the inhibition of photosynthesis is not induced by a depletion of intermediates of the Calvin cycle.

Tests on the effect of glyoxylate and P-glycolate on ribulosebisphosphate carboxylase activity showed that in crude leaves extracts the enzyme activity can only be inhibited by high concentrations of these substances. However, in intact spinach chloroplasts the enzyme activity can be blocked by using much lower concentrations of glyoxylate. This may indicate that the ribulosebisphosphate carboxylase activase is affected by this metabolite and that this may be the reason for an inhibition of photosynthesis after treatment with glufosinate.

Introduction

Phosphinothricin (PPT, glufosinate), an active ingredient of a non-selective herbicide [1] irreversibly inhibits glutamine synthetase [2]. The inhibition of GS caused by PPT results in an accumulation of ammonium under atmospheric (400 ppm CO₂, 21% O₂) and non-photorespiratory (1000 ppm CO₂, 2% O₂) conditions [3–6].

In the presented studies the effects of PPT on the amino acid concentrations, on photosynthesis and on the CO₂ compensation point were examined. In

addition, the influence of different intermediates of the Calvin cycle and photorespiration on the inhibition of photosynthesis by PPT and the effect of glyoxylate and P-glycolate on RuBPCase activity were studied.

Materials and Methods

Plants of *Sinapis alba* (mustard) and *Brassica napus* (oilseed rape) were grown as described by Wild and Manderscheid [7]. Growth conditions for *Spinacia oleracea* (spinach) plants were described by Robinson [8]. Excised leaves were fed with PPT and other compounds in various concentrations *via* the petiole. Measurements of amino acids and photosynthetic rate were carried out as described [9]. Determination of RuBPCase activity and the isolation of intact spinach chloroplasts were carried out as described by Wendler *et al.* [10].

Abbreviations: AOA, aminoxy acetate; GS, glutamine synthetase; GOGAT, glutamine-2-oxoglutarate aminotransferase; PPT, phosphinothricin (glufosinate), RuBPCase, ribulose-1,5-bisphosphate carboxylase.

Reprint requests to Prof. A. Wild.

Verlag der Zeitschrift für Naturforschung,
D-W-7400 Tübingen
0939–5075/93/0300–0369 \$ 01.30/0

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland Lizenz.

Zum 01.01.2015 ist eine Anpassung der Lizenzbedingungen (Entfall der Creative Commons Lizenzbedingung „Keine Bearbeitung“) beabsichtigt, um eine Nachnutzung auch im Rahmen zukünftiger wissenschaftlicher Nutzungsformen zu ermöglichen.

This work has been digitized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

On 01.01.2015 it is planned to change the License Conditions (the removal of the Creative Commons License condition "no derivative works"). This is to allow reuse in the area of future scientific usage.

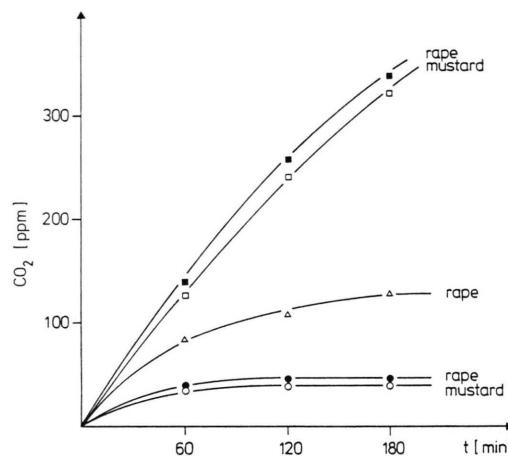


Fig. 5. CO_2 -Release of rape or mustard leaves after addition of PPT or PPT + glutamine. ●—●, ○—○ = controls; △—△ = treated with PPT (1 mM) + glutamine (20 mM); ■—■, □—□ = treated with PPT (1 mM).

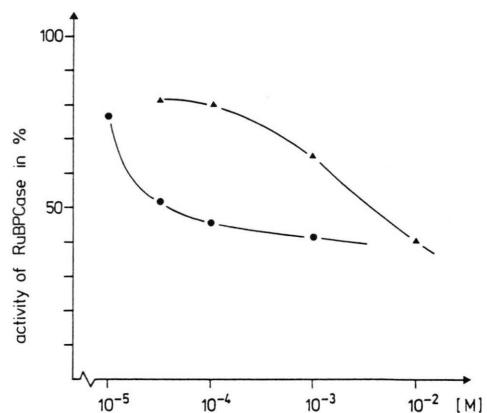


Fig. 6. RuBPCase activity (5) of intact spinach chloroplasts following addition of different glyoxylate (●—●) and P-glycolate (▲—▲) concentrations. Chloroplasts were preincubated in the dark for 1 min together with the substances prior to an illumination of 5 min.

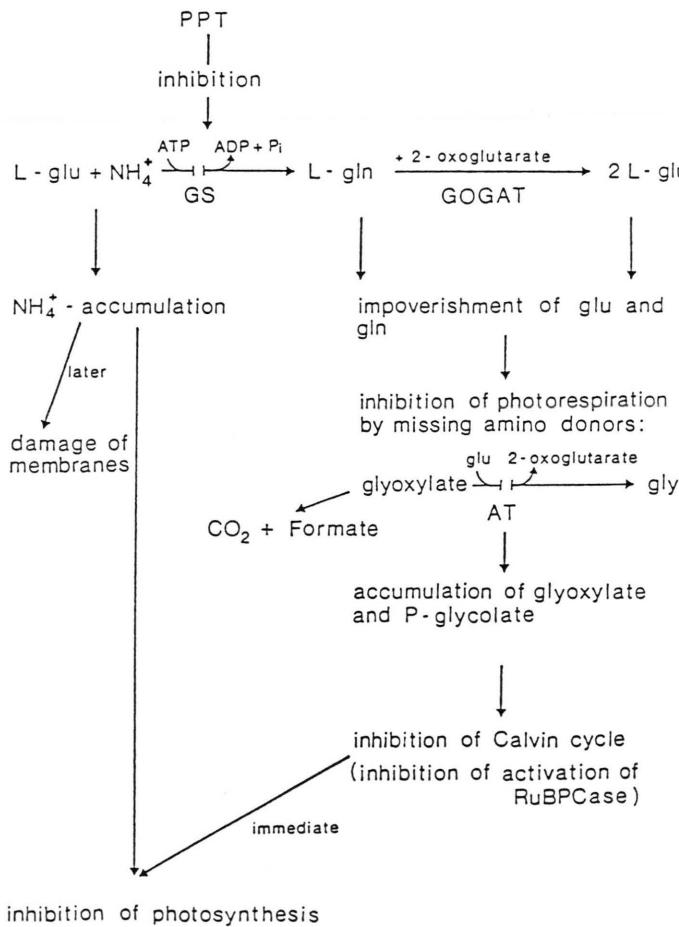


Fig. 7. Consequences of the inhibition of glutamine synthetase by glufosinate.

tion of glyoxylate to glycine; thus, glyoxylate can again be transformed in a large quantity.

Glyoxylate, that cannot be further converted, does not accumulate in large quantities because most of it oxidizes [10]. This could be the reason that no direct inhibition of RuBPCase takes place since high concentrations of glyoxylate or its pre-product P-glycolate would be necessary [10]. If, however, intact spinach chloroplasts are activated by light, small concentrations of glyoxylate already suffice to inhibit RuBPCase (Fig. 6).

It is to be accepted, therefore, that it is not the RuBPCase reaction that is directly influenced by glyoxylate and P-glycolate, but rather the activation conditions of the RuBPCase enzyme seem to be affected by these metabolites.

Fig. 7 summarizes the effects of the inhibition of glutamine synthetase by glufosinate. This inhibition gives rise to an accumulation of ammonium and to a strong decrease in glutamine and glutamate. The absence of sufficient amino donors in the glycolate pathway leads to a break-down of the transamination reaction of glyoxylate to glycine. The accumulation of glyoxylate and of its pre-product P-glycolate causes as a further consequence the inhibition of photosynthesis.

Acknowledgements

We are grateful to Hoechst AG (Frankfurt/Main, Germany) for kindly supporting this work by a gift of glufosinate.

- [1] W. Bübl and P. Langelüddeke, *Der dt. Weinbau* **18**, 850–851 (1984).
- [2] R. Manderscheid and A. Wild, *J. Plant Physiol.* **123**, 135–142 (1986).
- [3] H. Köcher, *Asp. Appl. Biol.* **4**, 227–234 (1983).
- [4] H. Sauer, A. Wild, and W. Rühle, *Z. Naturforsch.* **42c**, 270–278 (1987).
- [5] A. Wild, H. Sauer, and W. Rühle, *Z. Naturforsch.* **42c**, 263–269 (1987).
- [6] C. Wendler, M. Barniske, and A. Wild, *Photosynth. Res.* **24**, 55–61 (1990).
- [7] A. Wild and R. Manderscheid, *Z. Naturforsch.* **39c**, 500–504 (1984).
- [8] S. Robinson, *Photosynth. Res.* **10**, 93–100 (1986).
- [9] C. Wendler and A. Wild, *Z. Naturforsch.* **45c**, 535–537 (1990).
- [10] C. Wendler, A. Putzer, and A. Wild, *J. Plant Physiol.* **139**, 666–671 (1992).
- [11] W. L. Ogren, *Annu. Rev. Plant Physiol.* **35**, 415–442 (1984).
- [12] A. M. Amory and C. F. Cresswell, *Plant Physiol.* **124**, 247–255 (1986).